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ABSTRACT

Bidirectional long short-term memory (BLSTM) recurrent neural
networks are powerful acoustic models in terms of recognition ac-
curacy. When BLSTM acoustic models are used in decoding, the
speech decoder needs to wait until the end of a whole sentence is
reached, such that forward-propagation in the backward direction
can then be performed. The nature of BLSTM acoustic models
makes them inappropriate for real-time online speech recognition
because of the latency issue. Recently, the context-sensitive-chunk
BLSTM and latency-controlled BLSTM acoustic models have been
proposed, both chop a whole sentence into several overlapping
chunks. By appending several left and/or right contextual frames,
forward-propagation of BLSTM can be down within a controlled
time delay, while the recognition accuracy is maintained when
comparing with conventional BLSTM models. In this paper, two
improved versions of latency-controlled BLSTM acoustic models
are presented. By using different types of neural network topology
to initialize the BLSTM memory cell states, we aim at reducing
the computational cost introduced by the contextual frames and en-
abling faster online recognition. Experimental results on a 320-hour
Switchboard task have shown that the improved versions accelerate
from 24% to 61% in decoding without significant loss in recognition
accuracy.

Index Terms— BLSTM, latency-controlled BLSTM, online
speech recognition

1. INTRODUCTION

Recently, bidirectional long short-term memory (BLSTM) based
acoustic models have greatly improved accuracy on many tasks in
automatic speech recognition (ASR) [1, 2, 3, 4]. BLSTM is pow-
erful because the past and future contextual information can be
simultaneously utilized for each time instance, which leads to higher
prediction accuracy. BLSTM often performs better on sequence
classification tasks than LSTM [5, 6, 7] and feed-forward neural
networks (FFNN) [8, 9]. However, the conventional BLSTM acous-
tic models are inappropriate for real-time online speech recognition
because they need a whole sentence for decoding which introduces
unbearable latency.

Several methods have been developed to enable online speech
recognition with BLSTM acoustic models. A context-sensitive-
chunk (CSC) BLSTM method is proposed in [10, 11]. In this
method, a speech sentence is firstly split into non-overlapping
chunks of fixed length Nc. Then Nl past and Nr future contex-
tual frames are appended before and after each chunk (a typical
setup could be Nc = 60, and Nl = Nr = 30). The appended
frames are only used to initialize BLSTM memory cell states by

providing contextual information. They do not generate error sig-
nals nor posterior probabilities during training and decoding. Online
decoding becomes feasible using CSC-BLSTM because forward-
propagation can be done chunk-by-chunk in a streaming manner.
The cost is that Nl + Nr more time steps are evaluated for each
chunk than conventional BLSTM.

Later, latency-controlled (LC) BLSTMs are proposed in [12]
which avoids the computation of left context. The memory cell states
of the forward direction of the BLSTM are directly initialized by
carrying over states from the previous chunk, while the memory cell
states of the backward direction are still initialized using Nr future
frames like CSC-BLSTM. In this way, the extra evaluation overhead
is reduced to Nr time steps for each chunk.

The motivation of this work is to develop methods that further
decrease the computation overhead of latency-controlled BLSTM,
enable faster real-time online decoding, while maintaining the recog-
nition accuracy. TheNr future contextual frames are mainly used for
two purposes: 1) to initialize the memory cell states in the backward
direction, and 2) to calculate the output activations which are essen-
tially used to initialize the memory cell states for the upper layers.
Therefore, only to fulfil the initialization purposes, a less accurate
but more efficient feed-forward neural network could be adopted to
replace the time-consuming BLSTM. In our experiments on a 320-
hour Switchboard task, this method accelerates about 40% in de-
coding and maintains comparable word error rate (WER) with the
baseline LC-BLSTM.

Another method that further modifies the LC-BLSTM topology
is also studied. This method keeps the forward direction of BLSTM
unchanged, and uses simple RNNs [13] with rectified linear units
(ReLU) [14] to replace backward direction LSTM cells. Because
the evaluation of simple RNNs is much faster than LSTMs, the back-
ward computation can thus be reduced. Target delay needs to be in-
volved in this case because it has been shown that target delay is im-
portant to simple RNNs. Experimental results show that this model
topology speeds up about 61% in decoding with only 0.3% increase
in WER. Further, if we increase the number of memory cells a little
bit, no significant accuracy loss can be achieved with 27% accelera-
tion compared to the baseline BLSTM.

The rest of this paper is organized as follows: In Section 2 we
briefly review some previous works. In Section 3 two types of im-
proved LC-BLSTM models are introduced. Section 4 shows our
experimental setups and detailed results. Conclusions are drawn in
Section 5.
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Fig. 1. The architecture of LSTM network with a memory cell.

2. PREVIOUS WORK

2.1. LSTM

As shown in Fig.1, the standard LSTM cell architecture contains one
self-connected cell and three controlling gates (the red lines indicate
time-delayed connections). In the memory cell, input gate and out-
put gate manage information flow into and out of the memory cell.
Meanwhile, the forget gate is used to provide a way for the cell to
reset themselves. Furthermore, there are peephole weights connect-
ing the gates to the cell, which are used for obtaining more accu-
rate Constant Error Carousel (CEC) information [15] and improving
the LSTM’s ability to learn precise timing and counting of the in-
ternal states. A series of researches have demonstrated that LSTM
alleviates the vanishing gradient and exploding gradient problems to
some extent. The operation of the network follows the following
equations:

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi) (1)

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf ) (2)

at = tanh(Wxcx
t +Whch

t−1 + bc) (3)
ct = f t � ct−1 + it � at (4)
ot = σ(Wxox

t +Whoh
t−1 +Wcoc

t + bo) (5)
ht = ot � tanh(ct) (6)

where xt is the input, i, f , o and a are the input gate, forget gate,
output gate and cell input activation vector, respectively, c is a self-
connected state vector, and all of them are of the same size as the hid-
den vector h. Wci, Wcf and Wco are peephole connection weights
which are diagonal. σ denotes sigmoid activation function.

2.2. BLSTM

Unidirectional LSTMs only make use of past context. In contrast,
bidirectional LSTMs [5] use both the past and future context by pro-
cessing the input in both forward and backward directions with two
separated hidden layers, which are then concatenated as the final
output. BLSTM acoustic models often achieve better performance
in speech recognition than LSTMs. It comes with a cost that sig-
nificant latency needs to be introduced since decoding needs to wait
until seeing a whole sentence. This makes BLSTM acoustic models
inappropriate for real-time online speech recognition.

2.3. CSC-BLSTM and LC-BLSTM

To reduce decoding latency and also speed up the training process
of BLSTMs, CSC-BLSTM [11] and LC-BLSTM [12] are proposed.
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Fig. 2. Illustration of latency-controlled BLSTM.

LC-BLSTM is a more efficient version because it carries over the
whole past history from chunk to chunk, while only using a trun-
cated future context to initialize the memory cell states in backward
direction. As shown in Fig.2, a sentence is firstly split into non-
overlapping chunks of fixed length Nc, and then Nr future frames
are appended as right context. During training process the appended
frames generate no output, so no error signals will be generated from
the contextual frames. Training LC-BLSTM is generally more than
20 times faster than traditional BLSTM since it is memory-efficient,
so many utterances can be grouped in a “mini-batch” and processed
in parallel.

In decoding, the initial memory cell states of the forward direc-
tion can be directly copied from the previous chunk. The memory
cell states of the backward direction are initialized by evaluating the
Nr contextual frames. Therefore, the latency is controlled by ad-
justing Nr in decoding. The significant decreasing in latency comes
at cost of a slightly increasing of computational overhead. For each
chunk, the decoding overhead using LC-BLSTM is increased by a
factor of Nr

Nc+Nr
compared with conventional BLSTMs. It has been

shown in previous experiments that if one wants to maintain recog-
nition accuracy, Nr needs to be set large enough, e.g., Nc = 22 and
Nr = 21 [12]. This overhead directly affects the real-time factor
(RTF) in decoding and thus cannot be ignored.

3. IMPROVED LC-BLSTM ACOUSTIC MODELS

In this section, two improved LC-BLSTM acoustic models in terms
of efficiency are introduced to enable faster real-time online speech
recognition.

3.1. Forward approximation and backward DNN initialization

The evaluation steps of each BLSTM layer can be decomposed as
follows: In forward direction, we first compute from frame #1 to
frame #Nc, the output activations will be fed as the input to the
next layer until the final output (a vector of posterior probabilities)
is predicted. The memory cell states of frame #Nc will also serve
as the initial states for the next chunk. Then from frame #(Nc + 1)
to #(Nc + Nr), although the output activations are fed to the next
layer similarly, they are only used to initialize the backward memory
cell states of the next layer, and do not contribute to final output
(posterior probabilities) directly.

In backward direction, we firstly initialize the backward memory
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Fig. 3. Topology of LC-BLSTM-FABDI.

cell states to 0 and the computation starts from frame #(Nc +Nr)
to #(Nc + 1). After this step, the backward memory cell states
of the current layer at frame #Nc are initialized. Again the acti-
vations generated in this step only contribute to the initialization of
the backward memory cell states of the next layer. Then, computa-
tion continues from frame #Nc to #1 which generates activations
output to the next layer and in-term contribute to the final posterior
probabilities.

Note that the computation using the Nr future context frames
is mainly to provide initialization to the memory cell states in the
backward direction. So we first try to discard the forward compu-
tation from frame #(Nc + 1) to #(Nc + Nr) completely, which
is named as forward approximation (FA). In this case, the forward
part of the activations generated for the Nr contextual frames are
approximately set to 0. After that, a feed-forward neural network is
introduced in the backward direction which takes the Nr right con-
textual frames as input, generates activations fed to the next layer,
and also initializes backward memory cell states for the current layer.
This new topology is named “forward approximation and backward
DNN initialization” (FABDI), and can be illustrated in Fig. 3.

The feed-forward structure may contain three full connections
(marked as FC1, FC2 and FC3) and two nonlinear functions, or we
can try different combinations of them (FC1+FC2 and FC1+FC3).
An average operation (marked as AVG) is conducted to collapse Nr

vectors into a single vector, which is used to initialize the backward
memory cell states for frame #Tc. We choose logistic sigmoid for
f(·) and ReLU for g(·) in this study. The output activations gener-
ated by g(·) serve as the right-context frames Nr for the next layer.

The feed-forward structure along with the BLSTMs are jointly
trained in the training process using back-propagation. Because a
feed-forward structure is used instead of backward LSTM for ini-
tialization using Nr contextual frames, the training and evaluation
efficiency can be significantly improved. The problem remains is
that whether and how much this approximation affects speech recog-
nition accuracy. This is examined in our experiments empirically.

3.2. Forward approximation and backward simple RNN

The second topology is named “forward approximation and back-
ward simple RNN” (FABSR). As illustrated in Fig.4, we use for-
ward LSTM and discard the computing for Nr contextual frames as
in FABDI. The backward direction is completely replaced by using
simple recurrent neural networks (SRNN) [13].

SRNN SRNN SRNN

LSTM LSTM LSTM

SRNN

Nc Nr

SRNN SRNN

Fig. 4. Topology of LC-BLSTM-FABSR.

One of the key challenges for training SRNNs is that long-term
dependency is difficult to handle because of the gradient-exploding
problem. We apply more strict gradient-clipping in the training pro-
cess of LC-BLSTM-FABSRs to improve convergence.

4. EXPERIMENTS

The two improved latency-controlled BLSTM topologies are evalu-
ated on a 320-hr Switchboard task. The Switchboard training data
consists of 309 hour Switchboard-I training set and 20 hour Call
Home English training set (1540 speakers in total). The NIST 2000
Hub5e set (containing 1831 utterances from 40 speakers) is used as
the evaluation set in this work. For feature extraction, waveform sig-
nal is analyzed using a 25-ms Hamming window with a 10-ms fixed
frame rate. We use 39-dimensional MFCC features (static, first- and
second-order derivatives) to train a standard tri-phone GMM-HMM
model consisting of 8882 tied states based on the maximum likeli-
hood estimation (MLE). The GMM-HMM models are used to ob-
tain state-level labels by forced-alignment. 108-dimensional filter-
bank features (static, first- and second-order derivatives) are used for
training all latency-controlled BLSTM models. A 4-gram language
model (LM) is trained using 3M words of the training transcripts and
11M words of the Fisher English Part 1 transcripts.

The weights in all the networks are initialized to the range (-0.01,
0.01) with a uniform distribution. The initial learning rate is set to
1e−5, the momentum is kept as 0.9. We use Nc = 60 and Nr =
30 in the training process and try with different setups in testing.
All models are trained in a distributed manner using asynchronous
stochastic gradient descent (ASGD) [16] optimization on 4 GPUs.
A hybrid LC-BLSTM model stacked with 3 BLSTM layers (500
memory cells for each direction), 2 ReLU layers (2048 hidden nodes
for each layer) and 1 Softmax output layer is trained as the baseline
using frame-level cross entropy (CE) criterion.

4.1. Comparison of different configurations in decoding LC-
BLSTM baseline

We first evaluate the performance in decoding with different config-
urations of Nc and Nr on the LC-BLSTM baseline. As shown in
Table 1, full-latency BLSTM (Nc = ∞) provides the lower-bound
WER (13.0%) as expected. As we gradually decrease the latency
by varying Nc and Nr’s, the WER increases accordingly. It can be
seen from the results that longer context Nr is helpful to maintain



Table 1. WER of decoding with different Nc and Nr on LC-BLSTM
baseline.

Nc +Nr WER (%)
∞+ / 13.0
60 + 60 13.1
60 + 30 13.2
30 + 30 13.3
30 + 15 13.6
20 + 20 13.5
20 + 10 14.3

Table 2. Performance of FABDI methods with different connection
schemes.

WER (%) speed-up
LC-BLSTM (Nc = Nr = 30) 13.3 -

FA only 13.2 1.24x
FABDI (FC1+FC2+FC3) 13.4 1.40x

FABDI (FC1+FC2) 13.6 1.44x
FABDI (FC1+FC3) 13.5 1.44x

accuracy. This is consistent with previous work [11]. We choose
Nc = Nr = 30 as the LC-BLSTM baseline in all following exper-
iments because it is a good trade-off between decoding latency and
WER (only 0.3% absolute worse than the full-latency setup).

4.2. Forward approximation and backward DNN initialization

We present the WER along with the relative speed-up in decoding for
each FABDI setup. A modified version of publicly available Kaldi
decoder is used in all experiments on an Intel Xeon E5-2682 v4 CPU
to measure the improvements in decoding speed.

We first try to use forward approximation only, and the results
are given as “FA only” in Table 2. The forward approximation
achieves 1.24x speed-up, and does not degrade recognition accuracy.
Then we try different combinations on the feed-forward structure.
The node size in backward DNN part is set to 250 in all compar-
isons. When FC1, FC2 and FC3 are all used, comparable WER is
obtained, while a 1.40x speed-up can be achieved. We also try dif-
ferent setups like FC1+FC2 and FC1+FC3, both achieve a slightly
better speed-up of 1.44x, and the WERs increase a little bit from
0.2% to 0.3% absolute, respectively.

The results suggest that the forward evaluation on the Nr con-
textual frames is not critical to prediction accuracy. Simply by dis-
carding this, 24% acceleration can be achieved. Our FABDI method
using all three feed-forward connections is a good trade-off. 40%
acceleration can be achieved using this setup at a cost of only 0.1%
absolute WER increase from the baseline.

4.3. Forward approximation and backward simple RNN

In training LC-BLSTM-FABSRs, gradient-clipping is set to 5 for
LSTM and 1 for SRNN. Firstly, we use same number of nodes as the
LC-BLSTM baseline (500 memory cells for each direction). In this
case, the number of the model parameters is 3.3M, which is 15% less
than that of the baseline (3.9M). As shown in Table 3, it seems that
target delay [5] is useful to achieve better accuracy for SRNN. The
WER increases to 13.9% (0.6% absolute loss) without target delay
and 13.6% (0.3% absolute loss) with target delay of 5 time-steps.
These setups both achieve a speed-up of 1.61x, which is appealing.

Table 3. Performance of FABSR methods with different target delay
and number of nodes.

WER (%) speed-up
LC-BLSTM (Nc = Nr = 30) 13.3 -
FABSR(500)+ target delay 0 13.9 1.61x
FABSR(500)+ target delay 5 13.6 1.61x
FABSR(600)+ target delay 5 13.3 1.27x

Next, we increase the number of nodes for LSTM and SRNN to
600 such that the model now has similar amount of free parameters
(3.8M) to the baseline. The results show that by using this setup, LC-
BLSTM-FABSR is able to obtain a comparable WER as the baseline,
while still gives a speed-up of 1.27x.

5. CONCLUSION

In this paper, we present two improved version of latency-controlled
BLSTM acoustic models to speed-up the evaluation and enable
faster real-time online speech recognition. Firstly, an FABDI method
is introduced, which discards the computation on contextual frames
in the forward direction, and use a feed-forward structure in back-
ward direction to initialize the memory cell states. Secondly, an
FABSR method is used, which uses simple RNNs with ReLU units
to replace LSTM in the backward direction. Experimental results
show that different setups of the two methods accelerate from about
24% to 61% in decoding, without significant loss in WER.
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